华体会体育官网

华体会首页

位置:首页 > 典型案例
典型案例

|

发布时间:2022-05-01 05:10:03 来源:华体会体育官网 作者:华体会体育官网app

[展开全文]

  物联网是信息联网、移动联网基础上的一种新型连接模式。它成长于互联网的土壤,是基于互联网的边界扩展与内涵延伸。目前我国物联网产业链已形成闭环式发展,但仍存在应用需求、标准碎片化与深度应用不足等问题,企业盈利能力有待提高。

  前端采集层面:感知层步入多技术融合的创新期,精准、高效的数据采集是目的。国内MEMS产业发展较晚,受限于市场竞争、研发制造工艺,国内厂商毛利率水平仅为20%-33%。在多传感器融合、算法算力分布化趋势下,厂商应冲击中高端市场,前瞻布局以寻求弯道超车。

  融合联通层面:物联网设备连接量稳定增长、蜂窝网络“NB-IoT+Cat1+5G”格局已定,5G对运营商的商业赋能有待进一步场景发掘。数据价值释放亟需立法指引,政府监管下数据要素分类分级开放或是加速数据流通、社会福利最大化的最优解。

  数据应用层面:物联网优化了个人生活体验、释放了工业生产力潜能,大幅提升了城市建设水平和运营效率。经测算当渗透率达10%,生产领域年收益提升最高可达278亿元。但智能家居品牌生态阻隔、生产领域企业数字化突破不足、公共领域数据管理难度大及业务环节孤立等问题仍有待解决。

  趋势展望:未来,物联网企业间将呈现“大杂居,小聚居,共联盟”的生态融合态势,企业核心力量下沉,携手新基建夯实物联网基础。在产业链协同发展、数据交易和开放共享需求的持续牵引下,物联网+隐私计算+区块链的技术融合将加速渗透。物联网的概念界定

  物联网(Internet ofThings)是在互联网和通信网络的基础上,将日常用品、设施、设备、车辆和其他物品互相连通的网络。作为一个广义的概念,物联网利用传感器、通信网络、软件、控制系统等将物品与网络和其他物品进行连接和互动,实现对现实世界的数字化和自动化。物联网改变了互联网中信息全部由人获取和创建,以及物品全部需要人类指令和操作的情况,未来将深远地影响生产生活中的每个方面。未来,世界上物和物互联的规模将远超人和人互联的规模,这种指数型的增长主要来自物品与物品之间多种多样的连接与自主运行。物联网、云计算与人工智能

  物联网体系结构进一步拆解可分为感知层、网络层、平台层、数据分析层及应用层。物联网感知层产生、采集数据,经由5G通信技术依次运输到边缘侧、平台中心处,由边缘计算与云计算携手提供算力支撑,数据分析层主要采用大数据技术完成数据的预处理与分析,人工智能依赖云计算、大数据的数据和算力支持优化算法,最终反哺物联网的场景应用。

  物联网好似一片叶子的主叶脉,源源不断地导入数据养分,而人工智能、云计算等技术则像侧叶脉,接纳数据滋养地同时辅助数据要素价值释放和物联网应用更好地落地。各技术要素之间共存共生,互相依赖,贯穿数据的流动应用路径。未来,物联网、5G、云计算、大数据、人工智能等技术的联系将更加紧密,助推物联网应用落地到产业升级、场景智能化之中。中国物联网产业链图谱

  参与者众多,角色界限开始模糊,平台层玩家数量显著增多中国物联网产业链图谱

  众多垂直领域企业融合物联网技术,变革创新推出解决方案中国物联网产业问题:数据与设备安全

  物联网设备极具价值,被攻击后可能会对现实世界造成大范围的直接影响,如交通瘫痪、公共设施运转停滞(停水、停电、停气、停供暖)、远程操控、环境污染甚至人员伤亡。感知层位于物联网整体架构最底层、为其中最脆弱的部分,在其主要应用的RFID与WSN技术中,WSN路由协议存在固有缺陷,运用RFID时读写器与电磁波易于仿制,信息在远程传输的途中易被窃取;网络层易受DOS攻击、假冒攻击、中间人攻击等;平台层的主要价值为信息处理,数据量过大无法及时处理时,会增大设备故障概率从而出现安全漏洞。同时,物联网设备数量众多、类型多样,还会成为黑客控制的僵尸网络的一部分。从2016年开始,全球受到僵尸网络攻击的智能设备数量不断增长,僵尸网络甚至被《麻省理工科技评论》评为“2017全球十大突破性技术”。目前我国物联网对于信息安全的把控能力,相较于整体物联网的发展速度来说相对滞后,尚未实现可靠稳定传输,阻碍物联网的整体发展节奏。中国物联网产业问题:规模化与定制

  物联网企业若想在更多垂直行业实现规模化落地应用,必须构建便捷、低成本的物联网应用生态,控制定制项目比例或单项目内定制化比例,以形成规模效益。据《IoTSignals》中物联网企业调研结果显示,约1/3的物联网项目未通过概念验证(POC)阶段,而原因通常是项目规模化成本高(受访者数据:占比32%)。同时,据甲骨文发布的访谈调研报告显示,64%的物联网领域先行者们偏向于采购现成解决方案(COTS),项目周期更短、费用更低,但目前初创企业在打造标杆案例,提高项目模块复用率方面,受到内外部的双重阻碍。中国物联网产业问题:技术应用

  目前,我国物联网技术积累较为薄弱,技术水平的局限很大程度上限制了应用能力。首先,整体底层技术不够下沉,难以支撑平台层的数据孵化,最后反馈至应用层。例如芯片方面,大部分芯片抗网络攻击能力较差,物联网设备安全性欠缺;同时,其内部应用处理器未形成统一操作系统,开放性不足;物联网场景需求复杂,产品需继承多项功能,目前芯片集成度不足,往往需多芯片配合。应用场景方面,生活领域中除了需网络通信、传感设备等技术支持外,AI技术地深化程度也决定场景智能化的天花板。生产领域方面,因生产设施和环境的特殊性,设备能否同时兼备低功耗及稳定传输成为关键,并且实时的处理分析能力对WSN、传感器、边缘计算等技术有较高的要求。在公共领域的物联网应用中,从前端采集到后端分析的整个过程,都面临着对海量数据的采集、处理与应用,极大程度上依赖于RFID、5G等技术的发展。感知层基础技术架构

  感知层是物联网海量“物”数据涌入的入口,而林林总总的传感器和标识设备则是感知层的物理基础设施。基于上文对物联网中“物”的定义,感知层的技术由传感与识别技术和网络通信技术两部分构成,其中网络通信技术将在第五章详细讨论,在此不做赘述。识别技术是通过RFID标签、条形码、二维码、生物特征等手段来标识、识别物或人的技术,现已发展成熟并广泛应用。而传感技术,特别是智能传感器的开发,应“智能化、集成化、高性能”这一市场需求的指引,将长期处于多技术融合探索的发展阶段。目前,多传感器融合、MEMS-CMOS兼容技术、集成MCU的智能传感器等均为物联网感知层的技术热点与难点。感知层技术成熟度对比:供应链视角

  受市场竞争影响,国内MEMS厂商的供应链成本和研发费用分摊较高,且无法向下游传导,相反需要以价格作为敲门砖,国内厂商单规格同类产品的定价约为头部厂商的八到九成。MEMS产业链各环节集中度较高、产能有限,国内厂商多为Fabless经营模式,相较头部厂商,IDM模式在晶圆制造和封装环节不具备规模效应和议价优势,环节成本上浮约两成。测试环节技术相对成熟、市场化程度高,占比稳定在2%的水平。在研发费用的分摊上,国内厂商对产品生命周期预计为三到五年,技术工艺的更新迭代相对缓慢。此外,国内厂商为开拓市场,与终端实力客户的配合度较高,额外发生的软件适配成本将进一步拉升研发设计成本,压缩利润空间,浮动比例约为8%-10%。由此可见,国内MEMS厂商在设计研发迭代速率、晶圆制造和封装环节产业化方面仍有较大提升空间。感知层发展趋势一:多传感器融合

  多传感器融合具有双层含义,表层含义是指物理上的合二为一,在一个紧凑的传感器器件中集成多种传感器,典型的有IMU惯性单元,而更深层含义是指多传感器的数据融合。多传感器数据融合可类比为人脑根据各功能器官所探测到的信息进行综合处理,从而对所处环境和事态做出判断的过程。在消费电子、自动驾驶、机器人等场景下,通过大量、多种类传感器节点的配置和管理,以多源数据冗余和互补弥补单一传感器信号的误差和缺陷,通过数据模型及融合算法解决数据异质、数据冲突等问题,最终给出一致性结论或者提供有效决策支撑,是厂商突出重围亟需建立的技术壁垒。这需要在传感器组合方案、成本、算力与通信等资源分配间反复调试和权衡。以自动驾驶为例,其信源有雷达、红外、图像等,通过挖掘冗余、互补数据间的内在联系,构建高精度的环境感知图像和定位结果,进而指导汽车执行自动避障、定速巡航等驾驶任务。感知层发展趋势二:智能传感器

  在5G通信和物联网发展的双重驱动下,终端数量和数据量持续累积,集中式处理架构出现瓶颈,而分布式本地处理在通信和存储负担缓解、降低时延、数据安全性等方面的优势显现。智能传感器将传统传感单元整合计算单元和AI算法,使得传感器具备除测量之外的信息处理能力。通过算力算法从中心向边缘侧的下放,智能传感器自主完成对实时元数据的检查、诊断和校准,优化数据质量,自主完成数据分析,执行决策反馈。在工业控制、医疗服务、人脸识别等新兴应用场景下,存在实时响应、极小误差、公民隐私保护等极致需求,算力和算法加持下的智能传感器能够弥补现阶段传感技术的局限、满足上述场景中大量实时数据高效、安全处理的需要,同时降低云分析相关的成本和资源消耗。感知层发展趋势三:高端市场

  我国传感器产业起步较晚,因此在中高端传感器市场上落后于西方国家,国内市场约八成依赖于进口,传感器芯片市场更为势弱,自产比例仅占一成。在中低端市场竞争的日益加剧和传感器集成化趋势的作用叠加下,中低端传感器的单价持续走低,拉低市场增长率的同时压缩了厂商的利润空间,中小厂商艰难求生。

  中高端传感器具有高附加值,国内传感器厂商应顺应“专精特新”国家战略,尝试单点突破,专注于开发细分市场下的具有独创性的产品,以寻求突破“谷贱伤农”的陷阱。细分赛道中,CIS图像传感器领域的韦尔股份、声学传感器领域的歌尔微、压力传感器领域的敏芯股份已经实现了一定程度的突破,在市场上抢占了外国厂商原有的市场份额。物联网通信技术应用现状分析

  物联网终端设备感知的数据通过网络传递,承载物联网设备的传输网络主要为有线传输和无线传输两大类,其中无线传输是物联网的主要应用。无线传输技术按传输距离可划分为两类:一类是以Zigbee、WiFi、蓝牙为代表的无线局域网技术,受制于技术限制,单一通信方式均具有不同程度不同方向上的局限性,多以组合方案应用于智能家居、智能建筑等室内场景;另一类是移动物联网技术,即广域网通信技术。2020年5月,工信部发布了《关于深入推进移动物联网全面发展的通知》,目标建立NB-IoT、4G和5G协同发展的移动物联网综合生态体系,以NB-IoT满足大部分低速率场景需求,以LTE-Cat1满足中等速率物联需求和线G技术满足高速率、低时延联网需求,持续推进5G网络基础设施建设。物联网平台:数据价值孵化器

  物联网平台可提供跨不同设备和数据源的通用PaaS服务,在整个物联网架构中起到承上启下的中介作用,联动感知层及应用层之间的所有交互——向下连接、管理物联网设备端并完成感知数据的归集与存储,向上为应用开发商与系统集成商提供应用开发的统一数据接口及共性模块工具。在实现“物联”的基础之上,感知层与应用层频繁交互过程中,产生的数据具有体量大、种类多、动态滚动的特征,物联网平台作为产业链中的核心枢纽,更是应用融合以及数据价值孵化的土壤,除提供基础设施服务支撑设备间的数据交换外,通过对平台数据的处理、分析和可视化,将数据赋能过程大幅前置,充分发挥规模效应,实现数据即生产即处理,便于数据快速应用落地,简化物联网解决方案的复杂度并降低方案成本,充当“加速层”,推进各层在应用场景的落地速度与进程。四大类平台逐级加工,自下而上实现数据价值的累积升迁

  物联网平台在物联网体系结构中处于关键地位,根据功能可以将物联网平台分为连接管理平台、设备管理平台、应用使能平台和业务分析平台四个部分。其中,设备管理基本由通信模组、通信设备提供商主导,网络管理平台由电信设备商、运营商主导。领军企业纷纷构建开放的物联网平台,并将重要组件开源,持续提升开放性以更好聚合产业合作伙伴和开发者资源,向各行各业赋能。水平化通用平台,通过合作伙伴生态深化重点垂直领域应用。垂直行业巨头与互联网企业通过战略合作加强平台互联互通,完善平台服务功能,共享行业资源,提升行业竞争力。全球数据立法实践梳理与借鉴

  国家层面引导平台良性发展,数据确权仍是全球性立法难题物联网连接层发展趋势一:数据确权

  2020年4月9日,国务院发布了《关于构建更加完善的要素市场化配置体制机制的意见》,将土地、劳动力、资本、技术、数据定义为五大生产要素,明确了数据对于经济增长、价值创造的重要意义,而数据确权是实现数据增长潜能和建设数据要素市场的重要前提。数据具有非排它性、价值整体性及兼具人格权与财产权双重属性的特征,民法中的物权、知识产权无法完全对应适用,需要在立法实践中创新与探索。目前没有一个国家的法律明确将数据产权授予任何经济主体,但通过梳理全球数据产权立法实践和相关学者的研究,主流观点认为不应赋予个人数据产权,以防产生资源利用不足的“反公共地悲剧”问题,应更多强调对数据的人身权保护,以期在数据隐私安全的前提下实现数据要素的高效利用。而经脱敏处理、企业投入资本和创造性脑力活动形成的个人大数据,企业拥有对其的财产权益。物联网连接层发展趋势二:数据开放

  数据要素分类分级开放,政府全数据链引导+监管,严守隐私权底线的同时加速数据要素流动,以实现社会福利最大化万物互联难以成网:生活领域

  相较于物联网在其他领域的应用,生活物联网发展时间较久、市场也更为成熟,平台生态建设繁荣开放,平台内终端互联已初见规模。智能家居企业大多开放平台给上下游合作方,构建内部生态,以统一的出口向消费者提供完整服务。然而局部互联的日益繁荣加剧了生态阻隔和供需冲突。供给侧,产品和技术能力一骑绝尘的品牌尚未出现,大厂多以1-2款拳头单品裹挟消费者和中小厂商“站队”,被迫接受全套产品和方案,从而提升市占、构建品牌护城河;需求侧,用户偏好从多个品牌挑选最佳单品,DIY自己的全屋智能系统,在厂商生态隔绝的商业策略下,这意味着要牺牲产品部分功能和流畅的家居体验。这一供需矛盾困境,极不利于市场的良性竞争和发展,亟待寻找破局之道。未来,头部厂商或将联合通信厂商,共同建立统一的标准和协议,逐步探索从生态独立走向生态融合的发展路径,实现行业内数据、软件和模型等资源的横向打通,使平台网络效应最大化。万物互联难以成网:生产领域

  制造业企业具有业务传统、设备众多、作业环节多、工厂规模大等特点,因此生产领域的物联网建设步伐较为缓慢,大致可以分为五个阶段,分别为传统人工采集、设备数据直接采集、企业内部数据融合、上下游产业链数据打通以及企业间信息资源共享,最后构成整体产业生态的共通互联。目前中小型生产企业主要集中在从0到1的跨越阶段,即部署物联终端,进行设备数据直采。头部工业企业的数字化程度较高,带动更多企业上云上平台,逐步打通上下游数据链。另外,农业畜牧业领域由于生产环境相对恶劣、数字化水平低等因素,硬件部署困难、通信能力弱,物联网的应用难度更高。目前,我国不同规模企业数字化改革的步调不一,小型企业需着力进行数字化改造,持续提升数字化水平以贴近行业节奏;大型生产型企业应进一步打通产业链上下游及企业间数据,促进行业整体的物联网应用发展成熟。万物互联难以成网:公共领域

  物联网的应用渗透在公共领域的各个方面,从交通安防、智慧政务到环境资源管理等领域,涵盖范围广、数据量级大、处理环节和需要的支撑部门众多。面对大量的数据处理和繁杂的业务流程,物联网实际价值的发挥建立在对元数据的有效管理和高效的业务运作之上。现阶段,相关技术的发展水平限制了数据的有效应用,现有算法、算力难以支撑大量级的数据传输、处理、分析与应用。整体来看,提升技术能力是解决这一问题的关键,软硬件、算法、通讯技术的持续发展与突破,才能提升物联网的数据应用能力。如边缘计算可以释放部分算力与存储,与人工智能的结合可以赋能快速响应与决策;5G对减少时延,传输速度的提升有明显效果等。另一方面,公共领域各业务流程体系平台之间数据孤立、互不相通。在实际应用中,面临着重复提交资料、时限久、效率低下等问题。目前,各部委逐步建立形成城市运营中心,进行不同业务系统之间的平台打通,以提高业务与数据运营的效率和安全性。应用物联网的关键能力:生活领域

  以提升生活体验为主,可在一定程度上节约时间、提升效率应用物联网的关键能力:生产领域

  生产领域存在众多细分行业,行业间需求各异且高度碎片化,因此产业物联网的建设并非一蹴而就。工业大数据是工业物联网的核心价值源泉,借助物联传感、PaaS技术提升数据采集及分析能力以图更深层次挖掘工业数据价值,是工业物联网的核心价值体现。相较传统工厂设备人力监管的模式,工业物联网通过1.0设备数据直采建设有效地优化了OEE、人力成本、电力成本等工厂运营指标,辅助企业管理决策,支撑产线扩产增收,释放了工业生产力潜能。应用物联网的关键能力:公共领域

  近年来,各城市大力推进智慧政务、智慧交通等公共智慧建设项目,促进城市运转的效率提升、文明城市的建设,以及政务办理的便民化等公共智慧建设。在数据量级庞大,且财政资源有限的情况下,对5G、人工智能等技术的进一步发展与应用,以及平台之间的数据打通,是公共智能物联项目的落地推行的极大助力。以智慧政务为例,根据部分公开数据的统计分析,相比于传统政务办理方式,智慧政务所需申请材料的数量减少了约50%-70%,办理时限节约约50%-80%,极大提高了办事效率,真正做到了便民利民。物联网行业趋势一:产业生态

  艾瑞认为,在解决物联网碎片化等先天性问题的进程中,从政策引导角度及供需两侧的源生驱动力来看,物联网企业由“企业级生态”向“产业级生态”的跨进是不可或缺的,企业之间未来将呈现“大杂居,小聚居,共联盟”的群体智能生态融合态势。2020年12月1日,符合中国物联网产业特点的生态联盟——开放智联联盟(Open LinkAssociation,简称OLA联盟)应运而生,立下物联网产业生态构建的首个里程碑,业内出现多种生态抱团模式,其中智能家居产业的生态融合一马当先,未来将逐步向制造业及工业等场景渗透。物联网行业趋势二:技术应用

  物联网设备连接量和产生的数据量级呈爆发式增长,数据价值挖掘、数据安全流通的市场需求日益急迫,隐私计算融合区块链技术能够在数据跨主体流通中提供安全保障,成为平衡数据安全和数据要素价值释放的重要方案。隐私计算基于密码学、机器学习等技术,以可用不可见的密文得出计算结果,在保护主体信息安全的前提下实现数据交换和开放共享。而区块链技术作为重要补充,以其分布式存储、不可伪造、可追溯的特点,保障了信息源头的线年是隐私计算元年,艾瑞预计,在产业链协同发展、数据交易和开放共享需求的持续牵引下,物联网+隐私计算+区块链的技术融合将向各行业加速渗透。物联网行业趋势三:结构演变

  据艾瑞测算,2020年中国物联网设备连接量达74亿个,预计2025年将突破150亿个。海量物联网设备连接为平台层输送待育“种苗”,平台型企业鱼贯而出,为数据资源提供孵化沃土,物联网产业链条自下而上传输数据价值至应用层。然而我国底层基础技术较为薄弱,传感器、芯片等核心技术环节出现缺口,物联网基础设施整合效果欠佳,底层难以提供充足“养料”用于模型推理——产业链发展畸重畸轻,纺锤型产业结构阻塞价值自下而上传输,高成本、低复用、长周期产业痛点致使应用层落地场景和规模受限。

  艾瑞认为,为削弱产业发展不均衡带来的影响,一方面未来新基建的核心将放在:(1)联接:固定网络及无线)算力:提升算力水平以消化智能时代的海量多元数据,将物理世界信息抽象为数据,打通“数据孤岛”。另一方面,企业将配合政府推动核心力量下沉至底层以夯实产业基础,落实新基建在数字化升维进程中的发动机功能,形成“物智能化-联智能化-网智能化”产业智能化闭环,在双重引擎驱动下,加速物联网赋能渗透,实现人与物的泛在连接,提供信息感知、信息传输、信息处理等服务的基础设施。



上一篇:中科院:物联网新型体系结构
下一篇:云计算+物联网助推数字经济早日落地